Les Guides méthodologiques de l’INEAS
Direction de l’Evaluation des Interventions et Technologies de Santé

CHOIX METHODOLOGIQUES
POUR LES ETUDES PHARMACO-ECONOMIQUES
A L’INEAS
Ce guide est le fruit d’une collaboration internationale entre l’Institut national d’excellence en santé et en services sociaux (INESSS, Québec-Canada) et l’INEAS dans le cadre d’un programme de coopération technique avec l’Organisation mondiale de la santé (OMS). L’INEAS remercie vivement l’OMS en particulier le Dr Yves Souteyrand, représentant de l’OMS en Tunisie et Mme Priyanka Saksena, conseillère en systèmes de santé pour leur appui à ce projet et tous les expert(e)s internationaux qui ont contribué à l’élaboration ou la relecture de ce document ainsi que Dr Sondes Hamida (CNAM) pour sa précieuse collaboration.

L’INEAS remercie également tous les participants aux ateliers de discussion et tous les professionnels de santé qui ont contribué, à travers leurs commentaires, leurs réflexions et propositions, à l’enrichissement de ce guide, notamment le groupe SEPHIRE et la CNAM.

ÉQUIPE D’ÉLABORATION DU GUIDE:

INESSS

Auteurs
Nicholas Ouellet, Pharm. D., M. Sc

Collaborateurs
Marie-Claude Aubin, Ph. D.
Patrick Dufort, M. A
Marie-Ève Brouard, M. A.

Réviseur
Thomas Mortier, Pharm. D., M. Sc

INEAS

Hela Grati, Pharm. D
Marie Christine Jebali, BSc
Nabil Harzallah, MD
Jaafar Chemli, Pharm.D, MA

Directrice de l’évaluation des interventions et technologies de santé
Mouna Jameleddine, Pharm. D., M. Sc.

Director General
Chokri Hamouda, MD, Prof.

PEER-REVIEWERS:

Adrian Gheorghe, PhD: Economiste de la santé, Global Health and Development, Infectious Disease and Epidemiology, Imperial College London, Royaume-Uni

Adrian Levy, PhD: Professeur, Département de santé communautaire et d’épidémiologie, Université de Dalhousie, Canada

Y-Ling Chi, PhD: Economiste de la santé, Center for Global Development, Royaume-Uni
TABLE DES MATIERES

<table>
<thead>
<tr>
<th>Chapitre</th>
<th>Titre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Contexte</td>
</tr>
<tr>
<td>1.1</td>
<td>Données liées au médicament</td>
</tr>
<tr>
<td>1.2</td>
<td>Description de la pathologie</td>
</tr>
<tr>
<td>1.3</td>
<td>Prise en charge de la pathologie et options thérapeutiques disponibles</td>
</tr>
<tr>
<td>2</td>
<td>Objectif</td>
</tr>
<tr>
<td>3</td>
<td>Indication</td>
</tr>
<tr>
<td>4</td>
<td>Population cible</td>
</tr>
<tr>
<td>5</td>
<td>Perspective</td>
</tr>
<tr>
<td>6</td>
<td>Comparateur</td>
</tr>
<tr>
<td>7</td>
<td>Horizon temporel</td>
</tr>
<tr>
<td>8</td>
<td>Taux d’actualisation</td>
</tr>
<tr>
<td>9</td>
<td>Effets de santé</td>
</tr>
<tr>
<td>9.1</td>
<td>Intrants cliniques</td>
</tr>
<tr>
<td>9.2</td>
<td>Mesure des effets de santé</td>
</tr>
<tr>
<td>9.3</td>
<td>Utilités</td>
</tr>
<tr>
<td>10</td>
<td>Coûts et utilisation des ressources</td>
</tr>
<tr>
<td>10.1</td>
<td>Types de coûts</td>
</tr>
<tr>
<td>10.2</td>
<td>Présentation des données économiques</td>
</tr>
<tr>
<td>10.3</td>
<td>Sources des données économiques</td>
</tr>
<tr>
<td>11</td>
<td>Types d’analyses pharmaco-économiques</td>
</tr>
<tr>
<td>11.1</td>
<td>Analyse coût-eficacité</td>
</tr>
<tr>
<td>11.2</td>
<td>Analyse coût-utilité</td>
</tr>
<tr>
<td>11.3</td>
<td>Autres types d’analyse</td>
</tr>
<tr>
<td>12</td>
<td>Modélisation</td>
</tr>
<tr>
<td>12.1</td>
<td>Type de modèle</td>
</tr>
<tr>
<td>12.2</td>
<td>Sélection du modèle</td>
</tr>
<tr>
<td>12.3</td>
<td>Structure du modèle</td>
</tr>
<tr>
<td>12.4</td>
<td>Validation</td>
</tr>
<tr>
<td>13</td>
<td>Incertitude</td>
</tr>
<tr>
<td>13.1</td>
<td>Analyses de sensibilité déterministes</td>
</tr>
</tbody>
</table>

ABREVIATIONS

<table>
<thead>
<tr>
<th>Chapitre</th>
<th>Titre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Contexte</td>
</tr>
<tr>
<td>1.1</td>
<td>Données liées au médicament</td>
</tr>
<tr>
<td>1.2</td>
<td>Description de la pathologie</td>
</tr>
<tr>
<td>1.3</td>
<td>Prise en charge de la pathologie et options thérapeutiques disponibles</td>
</tr>
<tr>
<td>2</td>
<td>Objectif</td>
</tr>
<tr>
<td>3</td>
<td>Indication</td>
</tr>
<tr>
<td>4</td>
<td>Population cible</td>
</tr>
<tr>
<td>5</td>
<td>Perspective</td>
</tr>
<tr>
<td>6</td>
<td>Comparateur</td>
</tr>
<tr>
<td>7</td>
<td>Horizon temporel</td>
</tr>
<tr>
<td>8</td>
<td>Taux d’actualisation</td>
</tr>
<tr>
<td>9</td>
<td>Effets de santé</td>
</tr>
<tr>
<td>9.1</td>
<td>Intrants cliniques</td>
</tr>
<tr>
<td>9.2</td>
<td>Mesure des effets de santé</td>
</tr>
<tr>
<td>9.3</td>
<td>Utilités</td>
</tr>
<tr>
<td>10</td>
<td>Coûts et utilisation des ressources</td>
</tr>
<tr>
<td>10.1</td>
<td>Types de coûts</td>
</tr>
<tr>
<td>10.2</td>
<td>Présentation des données économiques</td>
</tr>
<tr>
<td>10.3</td>
<td>Sources des données économiques</td>
</tr>
<tr>
<td>11</td>
<td>Types d’analyses pharmaco-économiques</td>
</tr>
<tr>
<td>11.1</td>
<td>Analyse coût-eficacité</td>
</tr>
<tr>
<td>11.2</td>
<td>Analyse coût-utilité</td>
</tr>
<tr>
<td>11.3</td>
<td>Autres types d’analyse</td>
</tr>
<tr>
<td>12</td>
<td>Modélisation</td>
</tr>
<tr>
<td>12.1</td>
<td>Type de modèle</td>
</tr>
<tr>
<td>12.2</td>
<td>Sélection du modèle</td>
</tr>
<tr>
<td>12.3</td>
<td>Structure du modèle</td>
</tr>
<tr>
<td>12.4</td>
<td>Validation</td>
</tr>
<tr>
<td>13</td>
<td>Incertitude</td>
</tr>
<tr>
<td>13.1</td>
<td>Analyses de sensibilité déterministes</td>
</tr>
</tbody>
</table>
13.2 Analyses de sensibilité probabilistes
13.3 Analyses supplémentaires
13.4 Éléments à inclure pour évaluer l’incertitude

14. Présentation des résultats
14.1 Analyse coût- efficacité et coût-utilité
14.2 Analyses de sensibilité

15. Discussion
15.1 Interprétation des résultats
15.2 Sources d’incertitudes
15.3 Limites de l’analyse

16. Conflicts d’intérêts

17. Eléments clés de l’analyse de référence

18. Résumé des caractéristiques de l’étude

19. Références principales
ABREVIATIONS

- **AMM**: Autorisation de mise sur le marché
- **CNAM**: Caisse nationale d’assurance maladie
- **DALY**: Disability-adjusted life year (année de vie ajustée en fonction de l’incapacité)
- **DCI**: Dénomination commune internationale
- **HTAi**: Health Technology Assessment international
- **HUI-2**: Health Utilities Index Mark 2
- **HUI-3**: Health Utilities Index Mark 3
- **INATHA**: International Network of Agencies for Health Technology Assessment
- **INEAS**: Instance Nationale de l’Evaluation et de l’Accréditation en Santé en Tunisie
- **INESSS**: Institut national d’excellence en santé et en services sociaux au Québec, Canada
- **ISPOR**: International Society for Pharmacoeconomics and Outcomes Research
- **OMS**: Organisation mondiale de la santé
- **PIB**: Produit intérieur brut
- **QALY**: Quality adjusted life year (année de vie pondérée en fonction de la qualité)
- **RCEI**: Ratio coût-efficacité incrémental
- **RCUI**: Ratio coût-utilité incrémental
- **SF-6D**: Short-Form Six-Dimension
- **SSP**: Structures sanitaires publiques
- **TND**: Dinar Tunisien
AVANT-PROPOS

L’Instance Nationale de l’Evaluation et de l’Accréditation en Santé (INEAS) est une autorité publique scientifique, ayant notamment pour mission de contribuer à une allocation plus efficace des ressources par l’évaluation des interventions et technologies en santé (Health Technology Assessment, HTA).

L’INEAS se focalise essentiellement sur l’évaluation des technologies innovantes qui ont un bénéfice additionnel par rapport aux alternatives thérapeutiques existantes en Tunisie et qui pourraient potentiellement avoir un impact budgétaire conséquent.

Le présent guide fait partie d’un ensemble d’outils méthodologiques ayant pour objectif d’accompagner l’industrie pharmaceutique lors de la soumission d’un dossier d’évaluation d’un médicament auprès de l’INEAS et d’établir une ligne de conduite commune pour ce type d’études dans le contexte tunisien.

1. Guide de soumission des données cliniques et générales en vue d’une évaluation HTA

2. Choix méthodologiques pour les études pharmaco-économiques à l’INEAS

3. Choix méthodologiques pour l’analyse de l’impact budgétaire à l’INEAS

Il est destiné à l’évaluation de l’efficience qui est l’un des critères importants sur lesquels repose la décision d’allocation de ressources.

A la lumière de l’ensemble des données soumises dans le dossier HTA et des données de la littérature, l’INEAS émettra des recommandations aux décideurs facilitant la prise de décision en tenant compte de l’ensemble des dimensions évaluées notamment le bénéfice additionnel en santé, le rapport coût-éfficacité (l’efficience), l’impact budgétaire, etc. par rapport aux alternatives thérapeutiques dans le contexte tunisien.

Le public visé par le présent guide inclut notamment les laboratoires pharmaceutiques qui font une soumission à l’INEAS ainsi que des autres parties qui souhaitent développer ce type d’études.

Important : Les données soumises dans les trois parties qui constituent le dossier HTA doivent être cohérentes.
MÉTHODE D’ÉLABORATION DU GUIDE

Une revue des guides pharmaco-économiques a été effectuée afin d’établir les meilleures pratiques en évaluation des technologies en santé. Les guides ont été identifiés à partir d’une recherche, effectuée en octobre 2019, sur les sites Internet des agences d’évaluation des technologies de santé membres de INAHTA (International Network of Agencies for Health Technology Assessment) ainsi que le site Internet de ISPOR (International Society for Pharmacoeconomics and Outcomes Research). Seuls les guides les plus récents de chaque agence et disponibles en français ou en anglais ont été retenus. Des ouvrages de référence sur le sujet ont également été consultés et certaines définitions ont été tirées de la version française du glossaire d’évaluation des technologies de santé HTA Glossary élaboré dans le cadre d’un partenariat international entre INAHTA et HTAi (Health Technology Assessment international).

1. CONTEXTE

Présenter brièvement la demande et son contexte, indication(s) concernées (mentionner s’il y a des indications déjà évaluées par l’INEAS avec la date de l’avis) et niveaux de soins concernés (1ère ligne, 2ème ligne, 3ème ligne).

1.1. Données liées au médicament

[Se référer à la section 2 du Guide de soumission de données cliniques en vue d’une évaluation HTA à l’INEAS]

Synthèse des données cliniques

[Se référer à la section 12 du Guide de soumission de données cliniques en vue d’une évaluation HTA à l’INEAS]

L’INEAS privilégie une revue systématique de la preuve clinique disponible sur le médicament à l’étude. À défaut, une revue de littérature narrative incluant un résumé des principales données cliniques d’efficacité et de tolérance sur le médicament à l’étude peut être acceptée, avec justification.

Synthèse des données économiques

L’INEAS privilégie une revue systématique des études pharmaco-économiques du médicament à l’étude pour l’indication visée (ou de la pathologie s’il n’existe aucune littérature sur le médicament à l’étude à la date de soumission). À défaut, une revue de littérature narrative incluant un résumé des études économiques peut être acceptée, avec justification.
Tableau 1 : Résumé des études pharmaco-économiques retenues

<table>
<thead>
<tr>
<th>Publication (x)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Auteur(s), Année</td>
<td></td>
</tr>
<tr>
<td>Affiliation, Pays</td>
<td></td>
</tr>
<tr>
<td>Intervention(s)</td>
<td></td>
</tr>
<tr>
<td>Comparateur(s)</td>
<td></td>
</tr>
<tr>
<td>Perspective</td>
<td></td>
</tr>
<tr>
<td>Horizon temporel</td>
<td></td>
</tr>
<tr>
<td>Type de l’étude</td>
<td></td>
</tr>
<tr>
<td>Type du modèle</td>
<td></td>
</tr>
<tr>
<td>Taux actualisation</td>
<td></td>
</tr>
<tr>
<td>Résultats :</td>
<td></td>
</tr>
<tr>
<td>- ICER</td>
<td></td>
</tr>
<tr>
<td>- QALYs</td>
<td></td>
</tr>
<tr>
<td>- LYGs</td>
<td></td>
</tr>
<tr>
<td>Conclusion</td>
<td></td>
</tr>
<tr>
<td>Financement</td>
<td></td>
</tr>
</tbody>
</table>

1.2. Description de la pathologie

[Se référer à la section 5 du Guide de soumission de données cliniques en vue d’une évaluation HTA à l’INEAS]

1.3. Prise en charge de la pathologie et options thérapeutiques disponibles

[Se référer à la section 7 du Guide de soumission de données cliniques en vue d’une évaluation HTA à l’INEAS]

2. Objectif

L’INEAS exige que l’objectif soit complet et clair. Il doit permettre à l’INEAS d’émettre une recommandation afin d’ aider la prise de décision.

L’objectif de l’étude pharmaco-économique est de guider la décision d’inclure ou non le médicament évalué dans le panier de soins et de fournir aux décideurs des éléments pour la négociation du prix. La problématique et le contexte de prise de décision auxquels l’étude pharmaco-économique tente de répondre doivent être explicites. Il est attendu que l’objectif soit formulé de manière concise et qu’il inclue le médicament à l’étude, le(s) comparateur(s),
l’indication, la population cible ainsi que la perspective. Il s’agit pour l’INEAS d’évaluer si l’opportunité d’investir des ressources financières publiques est justifiée par les effets de santé supplémentaires que le médicament apporte.

3. **Indication**

L’INEAS exige que la population cible soit l’ensemble des patients visés par l’indication de la demande de remboursement (ou de couverture par des fonds publics) du médicament. Elle doit être détaillée de manière exhaustive. Un ou des sous-groupes peuvent également être considérés, avec justification.

L’indication est un concept large qui se définit comme un « symptôme clinique, facteur de risque ou circonstance justifiant le recours à une intervention particulière conformément, par exemple, aux recommandations d’un guide de pratique clinique, d’un protocole de soins, d’un organisme réglementaire ou d’une autre source d’autorité » (*HTA Glossary*).

L’indication du médicament pour laquelle l’étude pharmaco-économique est réalisée doit être mentionnée. Celle-ci doit être appuyée par les données cliniques soumises.

4. **Population cible**

La population cible est l’ensemble des patients concernés par l’indication pour laquelle la demande de remboursement (ou de couverture par des fonds publics) du médicament est effectuée. Elle peut être l’ensemble de la population identifiée dans l’AMM ou un (ou plusieurs) groupe(s) plus restreint(s) ou sous-groupes.

Un sous-groupe (ou sous-population) est un groupe plus restreint de patients qui est généralement défini par une ou plusieurs caractéristiques, ce qui les rend plus homogènes entre eux que dans la population totale de l’étude clinique ou de l’indication de l’AMM. Tout en étant inclus dans la population cible totale, le sous-groupe devrait exprimer une plus grande réponse à l’intervention ou repose sur un besoin de santé jugé plus important. Lorsque la soumission vise un sous-groupe, des éléments additionnels doivent être fournis afin de supporter l’utilisation du médicament évalué dans la population cible retenue :

- une justification du choix de la sous-population
- les caractéristiques de base des patients notamment démographiques (p. ex. : âge, genre)
- les caractéristiques de la pathologie (p. ex. : sévérité, facteurs de risques, facteurs pronostics, facteurs connus comme pouvant modifier l’effet du médicament)
- les antécédents de traitements (p. ex. : échec à des thérapies antérieures)
- les données cliniques associées spécifiquement à la sous-population accompagnées d’analyses statistiques.
- la ligne de soins
5. **Perspective**

L’INEAS exige que la perspective retenue dans l’élaboration de l’étude pharmaco-économique soit celle des payeurs publics dont les ressources de santé seront mobilisées :

- La Caisse Nationale d’Assurance Maladie (CNAM)
- Les Structures Sanitaires Publiques (SSP)

La perspective sociétale peut également être soumise, en guise d’analyse supplémentaire.

La perspective correspond au point de vue choisi pour une analyse donnée notamment celui de la CNAM, des structures sanitaires publiques, du ministère, du patient ou de la société permettant de déterminer quels coûts et quels effets doivent être inclus. Les perspectives exigées par l’INEAS sont celles de la CNAM et des SSP, la perspective sociétale peut également être soumise en guise d’analyse supplémentaire. La figure 1 fait un survol des principaux coûts et effets correspondant à ces perspectives. Pour plus de détails, consulter la section 10 pour les coûts et la section 9 pour les effets.

![Diagramme des coûts et effets principaux en fonction de la perspective retenue](image.png)

Figure 1 : Coûts et effets principaux en fonction de la perspective retenue

6. **Comparateur**

Le(s) comparateur(s) accepté(s) par l’INEAS sont des traitements bien ancrés(s) dans la pratique clinique en Tunisie et où des ressources publiques sont investies, si applicable. S’il n’existe aucun
traitement couvert, les comparateurs potentiels représentant le standard de soins en Tunisie doivent faire l'objet d'une analyse. Le choix du (des) comparateur(s) doit être clairement explicité et justifié. De même, une justification doit être fournie lorsque aucun comparateur n'a été retenu.

Par principe, l'étude pharmaco-économique met en relation deux interventions de santé ou plus, à savoir le médicament à l'étude ainsi que le (s) comparateur(s) qu'il est susceptible de remplacer. Les comparateurs sont l'ensemble des alternatives de traitement qui constituent le standard thérapeutique en Tunisie. Il s'agit d'une intervention (médicament ou autre) utilisé dans l'indication cible. Un comparateur peut :
- être constitué d'un ensemble ou d'une séquence de traitements
- différer du médicament à l'étude de point de vue mécanisme d'action
- être une intervention non médicamenteuse (p. ex. : dispositif, procédure médicale)

NB : Il peut y avoir plus d'un comparateur approprié quand les cliniciens ont à leur disposition un éventail d'options ancré dans la pratique clinique pour une indication donnée. Dans tous les cas, une justification est requise afin de conclure que le comparateur représente le standard thérapeutique. Lorsque le traitement évalué remplace une combinaison de traitements, l'ensemble doit être pris en compte. Pour une pathologie où le médicament étudié s'ajoute au standard de soins le comparateur est le standard de soins. Toutefois s'il n'existe pas de traitement actif disponible le comparateur devient l'absence de traitement.

Les comparateurs doivent être clairement décrits en incluant notamment la DCI, la posologie, le prix coût et fret, le prix remboursé par la CNAM et les traitements concomitants, si applicable.

7. **Horizon temporel**

L'horizon temporel doit être suffisamment long pour que l'ensemble des coûts et des effets soient pris en compte. Une justification est requise et doit reposer sur les données cliniques, la plausibilité des extrapolations et la cohérence avec les rapports HTA internationaux, ainsi que les études pharmaco-économiques publiées pour la même pathologie.

L'horizon temporel est la période durant laquelle les coûts et les effets de santé sont estimés dans l’étude pharmaco-économique.

Sa durée peut être influencée par l’évolution naturelle et l’aspect aigu ou chronique de la pathologie, le profil d’utilisation des médicaments et le moment de la survenue des coûts et des effets sur la santé.

L'horizon temporel doit être assez long pour que toutes les différences des coûts et des effets pertinents entre l'intervention et le(s) comparateur(s) soient pris en compte. Il doit être le même pour les coûts et les effets de santé ainsi que pour toutes les interventions comparées. La durée de
l’horizon temporel doit être justifiée par les données cliniques et économiques disponibles et par la plausibilité des extrapolations (section 12).

Des comparaisons avec les évaluations et rapports publiés de l’INEAS ou d’autres institutions HTA à l’échelle internationale devraient être effectuées. Par exemple, lors de l’évaluation, du trastuzumab dans le traitement du cancer du sein HER2 positif au stade précoce et localement avancé par l’INEAS, un horizon temporel à vie a été retenu, correspondant à 20 ans pour cette pathologie.

8. **Taux d’actualisation**

L’INEAS exige que le taux d’actualisation utilisé soit de 5 % au-delà de la première année, pour les coûts et les effets de santé.

En économie de la santé, le taux d’actualisation est utilisé pour déterminer la valeur actuelle des coûts et effets futurs. L’actualisation permet ainsi de tenir compte du fait que les coûts et les effets ne surviennent pas au même moment et d’ajuster pour refléter les préférences temporelles. En effet, les coûts et les effets, qui vont survenir dans le futur, sont estimés avoir une valeur moindre que celle au temps présent. L’actualisation ne doit pas être confondue avec l’inflation, qui est plutôt définie par l’augmentation du prix des biens et services au fil du temps.

Lorsque l’étude pharmaco-économique est réalisée sur un horizon temporel supérieur à une année, les coûts et les effets de santé doivent être actualisés au-delà de cette année, à un taux de 5 %. Ce taux doit toutefois faire l’objet d’analyses de sensibilité à des taux de 0 %, 3 % et 8 %, afin d’obtenir les résultats sans actualisation (0 %), d’utiliser le taux couramment employé dans d’autres contextes (3 %), permettant la comparabilité entre les études pharmaco-économiques disponibles, ainsi qu’un taux plus élevé (8 %) en guise de valeur maximale.

9. **Effets de santé**

Cette section aborde les intrants cliniques, la mesure des effets de santé dans l’étude pharmaco-économique ainsi que la notion d’utilité.

9.1. **Intrants cliniques**

| Les données d’efficacité, d’innocuité et de qualité de vie doivent être du meilleur niveau de preuve disponible. |

Efficacité

L’efficacité englobe deux concepts importants : l’efficacité théorique ou expérimentale (*efficacy*) et l’efficacité en vie réelle ou pratique (*effectiveness*).

L’efficacité théorique se définit comme le « bénéfice que procure l’usage d’un médicament, d’un programme ou d’une intervention pour traiter un problème particulier dans des conditions idéales, notamment dans le cadre d’une recherche en laboratoire ou d’un protocole d’essai clinique randomisé rigoureux » (*HTA Glossary*).
L’efficacité en vie réelle se définit plutôt comme le « bénéfice que procure l’usage d’un médicament, d’un programme ou d’une intervention pour traiter un problème particulier dans des conditions générales ou courantes plutôt que dans des conditions contrôlées, notamment dans le cadre de l’utilisation d’un médicament par un médecin dans un hôpital ou par un patient à domicile » (HTA Glossary).

Il est généralement attendu que l’étude pharmaco-économique repose, dans les limites de la disponibilité de l’information, sur l’efficacité en vie réelle. Étant donné que l’évaluation survient généralement très tôt dans le cycle de vie d’un médicament, il est courant que les données d’efficacité théorique soient plutôt utilisées. Dans tous les cas, l’efficacité intégrée dans l’analyse pharmaco-économique doit être basée sur les données cliniques du meilleur niveau de preuve, notamment des comparaisons directes ou des comparaisons indirectes (méta-analyse de bonne qualité méthodologique, essai clinique contrôlé randomisé, étude observationnelle...).

De plus, la conception d’un modèle (section 12) implique l’utilisation de données de diverses sources, telles que des essais cliniques, des méta-analyses, des études de comparaisons indirectes, des bases de données médicales ou administratives ainsi que l’avis d’experts. Ces données permettent de renseigner les différentes hypothèses nécessaires pour construire ou informer le modèle.

Surrogate endpoint

Un *surrogate endpoint* se définit comme un indicateur qui, « sans avoir d’intérêt direct pour le patient, peut refléter des résultats importants. Par exemple, la tension artérielle, qui n’est pas d’un intérêt clinique direct pour le patient, sert souvent de critère d’évaluation dans les essais cliniques parce qu’elle constitue un facteur de risque cardiovasculaire » (HTA Glossary).

Un *surrogate endpoint* doit permettre de faire le lien avec l’effet de santé jugé pertinent pour les patients. Lorsqu’un *surrogate endpoint* est utilisé comme mesure principale d’efficacité, une démonstration du lien causal doit être fournie, à l’aide de données probantes.

Innocuité

Les données sur la tolérance, incluant les effets indésirables documentés liés aux médicaments, doivent être incluses dans l’étude pharmaco-économique. Les effets qui sont jugés pertinents pour l’analyse sont notamment ceux qui ont un impact différentiel sur la qualité de vie ainsi que sur l’utilisation des ressources (section 10).

Les données utilisées doivent reposer sur les meilleures données cliniques disponibles, telles que celles des essais cliniques, et être bonifiées par d’autres sources, incluant notamment les données de pharmacovigilance, de registres et d’utilisation en vie réelle.
De ce fait, il est important de considérer d’autres sources de données que les essais cliniques, puisque ceux-ci sont souvent d’une durée restreinte et ne permettent pas toujours de bien capturer la survenue de tous les effets indésirables potentiels pour une utilisation à plus long terme.

Qualité de vie

La qualité de vie liée à la santé se définit comme les « mesures des effets d’une intervention sur l’état de santé des patients allant au-delà des mesures traditionnelles de mortalité et de morbidité pour inclure certaines dimensions comme la physiologie, le fonctionnement, la vie sociale, la cognition, les émotions, le sommeil et le repos, l’énergie et la vitalité, la perception de la santé et de la satisfaction générale » (*HTA Glossary*).

La qualité de vie liée à la santé devrait être prise en compte dans l’analyse pharmaco-économique à travers l’utilité (section 9.3). Les données sur la qualité de vie liées à la santé en rapport avec l’utilisation du médicament à l’étude doivent être fournies lorsqu’elles sont disponibles.

9.2. Mesure des effets de santé

L’INEAS exige que les effets de santé soient exprimés en année de vie et en année de vie ajustée sur la qualité (QALY). Toute autre mesure d’effet de santé (en l’absence de QALY ou d’année de vie) doit être justifiée.

Dans l’étude pharmaco-économique, il est préférable que les effets de santé soient exprimés en une mesure unique. Étant donné qu’ils englobent presque l’ensemble des effets de santé pertinents pour les patients, les indicateurs principalement reconnus dans les études pharmaco-économiques sont année de vie ajustée sur la qualité (*Quality-adjusted life year, QALY*) et l’année de vie.

Année de vie pondérée en fonction de la qualité

Un QALY est « une unité de résultat d’une intervention où les gains (ou les pertes) d’années de vie subséquentes à cette intervention sont ajustés en fonction de la qualité de vie pendant ces années » (*HTA Glossary*).

Le QALY est une unité de mesure bidimensionnelle qui pondère la durée de vie par la qualité de vie liée à la santé – selon une mesure d’utilité (section 9.3). Le QALY peut être utilisé dans différents contextes et pathologies et permet d’avoir une base de comparaison identique entre les différentes analyses/interventions.

Le nombre de QALYs pour un état de santé donné est le résultat de la multiplication de la quantité de vie (en années de vie) dans cet état et la valeur d’utilité qui lui est associée (préférence de cet état de santé). La quantité de QALYs totale pour une intervention donnée est ensuite constituée de la sommation des QALYs de chacun des états de santé.
Méthode

Année de vie dans l’état de santé A * Utilité de l’état de santé A

+

Année de vie dans l’état de santé B * Utilité de l’état de santé B

=

x QALYs

Exemple

20 ans * 0,82 + 10 ans * 0,73 = 23,7 QALYs

Il s’agit d’un indicateur pertinent à utiliser lorsque l’effet d’un médicament a un impact sur la qualité de vie liée à la santé. Cela s’applique notamment lorsque le temps passé dans un état de santé donné est différent entre les deux interventions évaluées.

Année de vie ajustée en fonction de l’incapacité

L’année de vie ajustée en fonction de l’incapacité ou *Disability-adjusted life year* (DALY) est une « unité d’état de santé où l’espérance de vie selon l’âge, est ajustée en fonction de la perte de santé et d’années de vie due à l’incapacité découlant d’une maladie ou d’une blessure » (*HTA Glossary*).

Cet outil de mesure est souvent utilisé pour calculer le fardeau de la maladie dans une population. Alors que le QALY permet de quantifier les années de vie additionnelles en parfaite santé, le DALY permet quant à lui de quantifier le nombre d’années en parfaite santé perdues en raison d’une invalidité, par rapport à l’espérance de vie attendue. L’objectif général est inverse ; il est question de minimiser le nombre de DALYs au lieu de maximiser le nombre de QALYs.

Le DALY n’est pas une mesure privilégiée par l’INEAS dans l’analyse pharmaco-économique.

Année de vie

Il s’agit d’un indicateur pertinent à utiliser lorsque le médicament a un effet sur la survie, par la prévention ou le retardement du décès. Cette mesure d’effet est généralement complémentaire au QALY.

Autres mesures

D’autres mesures d’effets de santé peuvent être jugées pertinentes en fonction de la situation. Par exemple, cela pourrait être l’impact du médicament sur les hospitalisations ou sur la quantité des visites médicales. Lorsque ces mesures sont retenues, il devrait y avoir une justification en fonction des données cliniques, des particularités de la pathologie et de sa prise en charge.
9.3. Utilités

L’INEAS privilégie une mesure indirecte de l’utilité, effectuée à l’aide d’un outil validé. À défaut, d’autres mesures d’utilité peuvent être soumises, notamment identifiées par une recherche systématique de la littérature scientifique et d’autres institutions HTA. Toutefois, une justification ainsi que des détails sur la source des données doivent être fournis. Les valeurs d’utilité retenues devraient, dans la mesure du possible, être récentes et représentatives de la population tunisienne.

L’utilité est la préférence (ou désirabilité) d’un état de santé. Elle se quantifie habituellement sur une échelle continue de zéro (0,00 - correspondant à la mort) à un (1,00 - correspondant à la santé parfaite). Au-delà de cette définition, certains états de santé sont parfois valorisés comme étant inférieurs à la valeur zéro, c’est-à-dire jugés pire que la mort.

Des éléments ayant un impact important sur la qualité de vie liée à la santé, tels que les effets indésirables, peuvent être inclus sous forme de décrement. Il s’agit d’une valeur faisant diminuer l’utilité en fonction de la probabilité de survenue de cet élément, de son type ainsi que de sa durée. Pour un même état de santé, la préférence peut être mesurée chez divers groupes de personnes, notamment les patients visés par l’indication, les médecins traitants ou la population générale.

Les méthodes de détermination des valeurs d’utilité se regroupent généralement en deux catégories : les mesures directes et indirectes.

Mesure directe

La mesure directe est la détermination de la valeur d’utilité représentant l’état de santé sans passer par une transformation. Les méthodes principales sont :

- le pari standard (*standard gamble*) : cette méthode fait intervenir un choix basé sur des probabilités d’avoir un état de santé comparativement à un autre;
- l’arbitrage temporel (*time trade-off*) : cette méthode fait intervenir une durée de temps durant laquelle un sujet serait prêt à diminuer sa vie afin d’avoir un certain état de santé comparativement à un autre;
- l’échelle visuelle analogue (*visual analogue scale*) : cette méthode fait intervenir une mesure sur une échelle, généralement graduée de zéro (0) à dix (10) ou cent (100).

Mesure indirecte

Les principaux instruments pour effectuer ce type de mesure sont :

- *European Quality of Life – Five Dimensions* (EQ-5D);
- *Health Utilities Index Mark 2* (HUI-2) et *Mark 3* (HUI-3);
- *Short-Form Six-Dimension* (SF-6D).

Tous ces instruments sont des questionnaires génériques, c’est-à-dire non spécifiques à une seule pathologie ou domaine de santé en particulier. Ceux-ci permettent de convertir les réponses des patients au questionnaire en effectuant une transformation selon les scores de préférences de la...
population générale via un processus séparé et réalisé en amont par des groupes de chercheurs. Il est recommandé de retenir des valeurs d’utilité qui ont été mesurées selon un outil de mesure indirect validé. Lorsque ces données n’ont pas été collectées dans le cadre du développement du médicament évalué ou ne sont pas disponibles dans le cadre d’une analyse validée sur la pathologie concernée, une revue de la littérature scientifique et d’HTA devrait être réalisée. Les valeurs d’utilité retenues devraient, dans la mesure du possible, être récentes et représentatives de la population tunisienne.

10. **COUTS ET UTILISATION DES RESSOURCES**

Les coûts doivent provenir de sources tunisiennes, notamment ceux de la CNAM. Les données sur l’utilisation des ressources doivent représenter le parcours de soins en Tunisie, par exemple via les documents de l’INEAS. À défaut, l’utilisation de la littérature scientifique ainsi que l’avis d’experts cliniciens sont jugées des méthodes adéquates.

Cette section effectue un survol des différents coûts, de l’utilisation des ressources et des sources de données à utiliser.

10.1 **Types de coûts**

Dans le contexte d’une analyse pharmaco-économique, les coûts peuvent être classés en deux grandes catégories : les coûts directs et les coûts indirects.

Il est attendu que les coûts directs soient inclus de la manière la plus exhaustive possible. Les coûts indirects ne sont pas exigés par l’INEAS. Ils seront considérés si la perspective sociétale (cf. section 5) est adoptée en plus de la perspective des payeurs publics.

Coûts directs

Les coûts directs sont « l’ensemble des coûts fixes ou variables des ressources (biens, services, etc.) monopolisées dans le cadre de la mise en œuvre d’une intervention et de la gestion de ses conséquences » (*HTA Glossary*). Cette catégorie comprend divers coûts en lien avec les soins et services de santé (tableau 2).

Coûts indirects

Les coûts indirects sont définis comme « L’ensemble des coûts attribués à la valeur de la production économique perdue en raison d’une pathologie, d’une blessure invalidante ou d’un décès prématuré » (*HTA Glossary*).

Les coûts indirects représentent généralement les coûts liés aux pertes de productivité (absentéisme et présentéisme) des patients et de leurs proches aidants. Les méthodes les plus couramment utilisées pour les quantifier sont la méthode du capital humain (*Human capital method*) et la méthode du coût de friction.
• La méthode du capital humain estime les coûts liés à la perte de production des patients secondaire à la pathologie ou la gestion de celle-ci. Cette estimation se base « sur la valeur économique, pour la société, la durée de vie en bonne santé d’une personne du même âge; la valeur économique est mesurée par une estimation du revenu que la personne aurait pu gagner » (HTA Glossary).

• La méthode du coût de friction est définie comme « L’estimation du coût de la perte de production engendrée par l’absence d’un employé durant la période nécessaire à l’organisation pour le remplacer et retrouver le niveau de productivité initial » (HTA Glossary).

Coûts pertinents à l’analyse

Le tableau 2 fait état d’un recensement des coûts par patient à intégrer lors de la réalisation de l’analyse pharmaco-économique.

Tableau 2 : Coûts principaux à intégrer dans l’étude pharmaco-économique

<table>
<thead>
<tr>
<th>Coûts directs</th>
<th>Coûts indirects (perspective sociétale)</th>
</tr>
</thead>
<tbody>
<tr>
<td>▪ Coûts d’acquisition des médicaments ou des autres interventions</td>
<td></td>
</tr>
<tr>
<td>▪ Coûts liés à la préparation et l’administration des médicaments</td>
<td></td>
</tr>
<tr>
<td>▪ Coûts des visites et suivis médicaux (personnel médical, infirmier, etc.)</td>
<td></td>
</tr>
<tr>
<td>▪ Coûts des traitements subséquents</td>
<td></td>
</tr>
<tr>
<td>▪ Coûts des hospitalisations, chirurgies, services ambulanciers</td>
<td></td>
</tr>
<tr>
<td>▪ Coûts liés à la gestion des effets indésirables</td>
<td></td>
</tr>
<tr>
<td>▪ Coûts de fin de vie</td>
<td></td>
</tr>
<tr>
<td>▪ Coûts des tests diagnostiques et de dépistage</td>
<td></td>
</tr>
</tbody>
</table>

Coûts directs (perspective sociétale)

| ▪ Coûts médicaux assumés par les patients et les proches aidants (out-of-pocket, p. ex. traitement, hospitalisation ou médicament, selon la portion non couverte par le payeur public) |
| ▪ Coûts non médicaux assumés par les patients et les proches aidants (p. ex. transport pour recevoir des soins) |

| ▪ Coûts des pertes de productivité des patients et des proches aidants |

Choix méthodologiques pour les études pharmaco-économiques INEAS, Novembre 2021 Page 19/44
10.2 Présentation des données économiques

La quantité des ressources consommées par patient ainsi que leur coût unitaire doivent être présentés, de manière ventilée.

Méthode

<table>
<thead>
<tr>
<th>Nombre d'unités de la ressource * Coût unitaire de la ressource</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exemple</td>
</tr>
</tbody>
</table>

| Nombre d’ampoules * Coût d’une ampoule |
| 2 ampoules de 10 mg * 650 TND = 1300 TND |

Les coûts devraient être présentés en dinar tunisien (TND) de l’année en cours (ou précédente), ajustés pour l’inflation à l’aide de l’indice des prix à la consommation selon la Banque Centrale de Tunisie.

10.3 Sources des données économiques

Le prix proposé par le laboratoire doit être soumis à l’INEAS. L’INEAS exige que l’analyse soit menée en considérant, pour le médicament à l’étude ainsi que ses comparateurs, le prix coût et fret. Si des remises confidentielles sont (ou seront) appliquées (notamment sous forme d’*access program*), l’INEAS recommande qu’une analyse coût efficacité supplémentaire incluant la remise proposée soit soumise.

Pour le(s) comparateur(s), si des remises confidentielles sont appliquées, l’INEAS recommande de les inclure dans l’analyse supplémentaire sus-citée (où le prix remisé du laboratoire est utilisé). Si le laboratoire n’a pas accès aux remises confidentielles appliqués pour le (ou les) comparateurs des ajustements pourraient être faits sur les résultats de l’analyse par l’INEAS après consultation des parties concernées.

Il est recommandé d’appliquer le taux de change de l’année en cours selon la Banque Centrale de Tunisie.

Les données sur les coûts unitaires doivent préférentiellement provenir de sources tunisiennes. Les tarifs conventionnels de la CNAM (p. ex. : conventions sectorielles CNAM médecins de libre pratique, conventions CNAM MSP etc.) ou ceux des établissements sous la tutelle du Ministère de la Santé constituent un exemple adéquat de sources unitaires de coûts. Dans tous les cas, les sources des données doivent être clairement rapportés et référencées.

Les données sur l’utilisation des ressources doivent représenter le contexte tunisien. L’utilisation des ressources de santé associée à l’usage d’un traitement peut également être quantifiée à l’aide des données des études cliniques ou observationnelles évaluées. À défaut de disponibilité de ces données (ou afin d’effectuer une validation), la littérature scientifique et l’avis d’experts sont jugés des méthodes adéquates.
11. TYPES D’ANALYSES PHARMACO-ECONOMIQUES

L’analyse de référence exigée par l’INEAS est l’analyse coût-utilité associée systématiquement à une analyse coût-éfficacité (coût par année de vie gagnée). Le choix de toute autre type d’analyse par le laboratoire doit être dûment justifié.

Les principales méthodes d’analyse sont abordées dans cette section. Un récapitulatif des différents types d’analyses est présenté dans le tableau 3.

11.1 Analyse coût-éfficacité

L’analyse coût-éfficacité est une méthode d’évaluation économique qui consiste à mettre en relation les coûts de différentes options à leurs effets sur la santé. Les effets de santé sont exprimés en unités naturelles non monétaires (p. ex. : année de vie, événement évité) et sont les mêmes pour toutes les options comparées. Même si l’unité d’effet de santé constitue un dénominateur commun pour toutes les options évaluées, l’ampleur d’effet attendue est généralement différente lorsque ce type d’analyse est retenu.

Le résultat de ce type d’analyse – le ratio coût-éfficacité incrémental, RCEI (Incremental Cost-effectiveness ratio, ICER) – est le coût additionnel du médicament à l’étude par rapport au coût du comparateur, divisé par la différence entre les effets des interventions. La présentation des résultats est discutée à la section 14 et l’interprétation à la section 15.

11.2 Analyse coût-utilité

L’analyse coût-utilité est une méthode d’évaluation économique qui est une forme particulière de l’analyse coût-éfficacité. Elle consiste à intégrer l’utilité dans la mesure de l’effet de santé. Cela permet de prendre en compte plusieurs effets de santé dans une mesure unique, notamment le QALY qui est l’outil de mesure le plus utilisé dans ce type d’analyse.

Le résultat de cette analyse – le ratio coût-utilité incrémental, RCUI – se mesure de la même manière que le RCEI.

11.3 Autres types d’analyse

D’autres types d’analyses existent. Les plus fréquentes sont présentées ci-dessous à titre informatif mais ne sont pas recommandées par l’INEAS dans le cadre d’un dossier HTA actuellement.

Analyse de minimisation des coûts

L’analyse de minimisation des coûts est une méthode d’évaluation économique qui consiste à comparer les coûts de différents médicaments présumés produire des effets de santé semblables (efficacité et innocuité). L’analyse revient donc à établir l’alternative la moins coûteuse. Le résultat est exprimé, pour la plupart des situations, en termes de coût de traitement différentiel.
Lorsque les données cliniques démontrent que le médicament évalué offre des effets semblables à ses comparateurs, l’analyse de minimisation des coûts peut être jugée adéquate.

Analyse coût-conséquences

L’analyse coût-conséquences est une méthode d’évaluation économique dans laquelle les composantes de coûts et d’effets de santé sont présentées de manière désagrégée. Il n’y a donc aucune agrégation des effets de santé telle qu’effectuée dans les analyses coût-éfficacité et coût-éfficacité-utilité. Il revient aux décideurs de poser un jugement sur le compromis acceptable entre les coûts et les effets de santé des différentes alternatives évaluées.

Lorsque les médicaments comparés n’ont pas de dénominateur commun au regard des effets de santé ou qu’il est impossible de quantifier les effets de santé en une mesure unique telle qu’un QALY ou une année de vie, l’analyse coût-conséquences peut représenter une méthode acceptable. Toutefois, cette analyse n’est pas privilégiée en raison de l’appréciation plus subjective des résultats.

Tableau 3 : Récapitulatif des différentes méthodes d’analyse pharmaco-économique

<table>
<thead>
<tr>
<th>Type d’analyse</th>
<th>Unité de mesure des effets de santé</th>
<th>Unité de mesure des coûts</th>
<th>Résultat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyse coût-éfficacité</td>
<td>Unité naturelle</td>
<td>TND</td>
<td>Ratio coût-éfficacité incrémental (RCEI)</td>
</tr>
<tr>
<td></td>
<td>[ex. hospitalisation, année de vie gagnée]</td>
<td></td>
<td>[ex. TND/hospitalisation évitée TND/année de vie gagnée]</td>
</tr>
<tr>
<td>Analyse coût-utilité</td>
<td>QALY</td>
<td>TND</td>
<td>Ratio coût-utilité incrémental (RCUI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[TND/QALY gagné]</td>
</tr>
<tr>
<td>Analyse minimisation des coûts</td>
<td>Aucune (effets présumés semblables)</td>
<td>TND</td>
<td>Coût différentiel [TND]</td>
</tr>
<tr>
<td>Analyse coût-conséquences</td>
<td>Plusieurs unités d’effets jugés pertinents</td>
<td>TND</td>
<td>Présentation des coûts et des effets de santé sans agrégation</td>
</tr>
</tbody>
</table>
12. **MODELISATION**

L’INEAS privilégie l’utilisation d’un modèle reconnu dans la pathologie, c’est-à-dire ayant fait l’objet de publication ou d’évaluation par des institutions HTA. Pour effectuer les travaux d’évaluation de l’étude pharmaco-économique, un tableur électronique du modèle pharmaco-économique doit être soumis en format Microsoft Excel MC.

Trois types de validation doivent être effectuées : la validité apparente, la validité interne et la validité externe. Le rapport doit comporter une discussion sur les méthodes employées pour les trois types de validation. La démonstration d’une validité externe est requise.

Dans l’évaluation des médicaments, le modèle permet de simuler l’évolution de la pathologie à travers les différents états de santé qui peuvent survenir chez un patient. Généralement, chacun de ces états de santé est lié à une valeur d’utilité et à une utilisation des ressources. Ainsi, le passage des patients par ces différents états de santé sur la durée de l’horizon temporel retenu, permet de recueillir les éléments requis à la détermination des effets de santé (année de vie ou QALY) et des coûts des ressources consommées, liés aux médicaments comparés. A cette fin, une extrapolation des effets observés à court terme (notamment dans des essais cliniques) doit être réalisée par modélisation, afin d’estimer les résultats observables à long terme lors de l’évolution de la pathologie.

Extrapolation et plausibilité

Dans la situation, très fréquente, où l’horizon temporel de l’étude pharmaco-économique est plus long que la durée sur laquelle les données cliniques ont été mesurées, une extrapolation doit être effectuée. Cette situation implique généralement une modélisation des données cliniques observées et devrait faire l’objet d’analyses de sensibilité en raison de l’incertitude liée. Il est important que la plausibilité de l’extrapolation sur l’horizon temporel soit justifiée. Le choix d’un horizon temporel plus restreint peut-être envisagé en cas de forte incertitude générée par l’extrapolation des données. Les intrants, les hypothèses, les transformations mathématiques ou statistiques effectuées (s’il y a lieu) doivent être bien explicités, justifiés et référencés.

12.1 **Type de modèle**

Il existe plusieurs types de modèles, les plus fréquemment rencontrés sont : l’arbre de décision, le modèle de transition d’états de santé de Markov, la survie cloisonnée et la microsimulation. Un survol des différents types de modèles est effectué ci-après.

Arbre de décision

Ce type de modèle tient son nom de sa représentation graphique (Figure 2). Il s’agit d’une approche qui consiste à simuler le cheminement d’une cohorte de patients - à l’aide de branches - à travers les différentes options de traitement et états de santé liés à la pathologie. Des probabilités d’occurrence sont déterminées pour chacun des états de santé et chacune des alternatives.
Choix méthodologiques pour les études pharmaco-économiques

Figure 2 : Arbre de décision

Modèle de transition d’états de santé de Markov

Le modèle de transition par états de santé de Markov (Figure 3) implique également une cohorte simulée de patients. Il s’agit d’un type de « modélisation quantitative incluant un ensemble particulier d’états de santé mutuellement exclusifs et complets, pour lesquels il existe des probabilités de transition d’un état à un autre, y compris la probabilité de rester dans le même état » (HTA Glossary). La propriété caractéristique de ce type de modèle est que chaque transition d’un état à un autre n’est pas influencée par une transition antérieure, mais seulement liée à l’état dans lequel se situe le patient au moment de la transition. Cette propriété est appelée l’absence de « mémoire » des événements antérieurs simulés (memoryless). Dans certaines situations, cette propriété peut faire en sorte que des états de santé distincts et mutuellement exclusifs pour chacune des trajectoires doivent être modélisés, ce qui peut amener à une multiplication importante du nombre d’états. Dans ce type de modèle, les périodes de temps ont une durée fixe (appelées cycles) et les probabilités de transition ne changent pas avec le temps. Les résultats du cheminement de la cohorte sont calculés pour les effets de santé et les coûts. Ce type de modèle est souvent utilisé pour représenter des pathologies chroniques ou évolutives.
Figure 3 : Modèle de transition d’états de santé de Markov

Survie cloisonnée

Le modèle de survie cloisonnée (partitioned survival model, Figure 4) suit le parcours de soins d’une cohorte de patients à travers des états de santé mutuellement exclusifs. Toutefois, à la différence d’un modèle de transition d’états de santé de Markov qui utilise des probabilités de transition, le modèle de survie cloisonnée utilise des équations ou des courbes de survie paramétriques ou semi-paramétriques pour estimer la proportion des patients de la cohorte qui se retrouvent dans chaque état de santé en fonction du temps. Ce modèle est souvent utilisé dans l’évaluation pharmaco-économique en oncologie. Pour se faire, les données de survie (survie sans progression et survie globale) de l’essai clinique sont utilisées afin de juxtaposer les courbes paramétriques qui serviront à estimer la survie sans progression à plus long terme, c’est-à-dire au-delà de la durée de l’essai clinique.
Microsimulation

Ce type de modèle simule le cheminement individuel des patients sur l’horizon temporel. Ainsi, chaque patient suit une trajectoire de la maladie qui lui est propre, ce qui diffère d’un modèle de transition d’états de santé de Markov où l’évolution de la cohorte est simulée en une seule fois et basée sur les caractéristiques moyennes de la population visée. Cette évolution microsimulée est généralement influencée par les caractéristiques de base, les facteurs de risque et les antécédents de santé simulés de chaque patient. Les résultats de leur cheminement sont compilés, la somme des effets de santé et des coûts est effectuée et une moyenne est alors calculée. Le modèle de microsimulation peut être plus complexe et nécessiter davantage d’informations afin d’estimer l’impact de différentes variables. Toutefois, il permet de prendre en compte des éléments additionnels ayant un impact sur l’évolution de la pathologie au niveau de chaque individu.

12.2 Sélection du modèle

Le choix du modèle à utiliser est influencé par plusieurs éléments, tels que l’objectif de l’étude pharmaco-économique, le type de pathologie, l’évolution de la pathologie, le parcours de soins, ainsi que l’impact attendu des médicaments comparés.

La modélisation est une simplification de la réalité ; Elle doit être exhaustive sans toutefois être ni trop complexe afin de répondre à l’objectif préalablement établi, ni trop simpliste afin d’être capable de discerner adéquatement les effets de chacun des produits.
Un modèle jugé de bonne qualité devrait refléter la pratique clinique actuelle, se baser sur les meilleures données disponibles, faire objet de transparence et être reproductible.

Les modèles existants devraient être considérés, plus spécifiquement les modèles reconnus dans la pathologie ayant fait l’objet de publication ou d’évaluation par des agences HTA.

12.3 Structure du modèle

La structure du modèle doit adéquatement refléter l’évolution de la pathologie et le parcours de soins. La description de celle-ci devrait inclure les principaux éléments du modèle, notamment en lien avec la pathologie, les différents états de santé, le parcours de soins et les options de traitements, ainsi que les relations entre les éléments. Une figure simplifiée de la structure générale du modèle doit également être fournie.

12.4 Validation

Plusieurs types de validation du modèle sont requises : cette section aborde les trois principaux, lesquels doivent être évalués et discutés.

- La validité apparente (face validity) implique 4 éléments, soit la structure du modèle, les sources des données, l’objectif de l’étude et les résultats. Ce type de validation est subjectif et devrait être effectué par des experts de la pathologie et les données scientifiques. Le laboratoire doit notamment apporter des preuves de la réalisation de ce processus avec des experts de la pathologie en Tunisie.

- La validité interne (ou validation technique) fait référence aux calculs mathématiques et implique que le modèle réagit tel qu’il a été programmé. La contre-vérification avec les équations sources, une double programmation (effectuée par 2 personnes de manière indépendante) ainsi que le test de valeurs extrêmes sont des exemples de méthodes appropriées.

- La validité externe implique une comparaison des résultats du modèle avec les données cliniques observées et les données de l’histoire naturelle d’évolution de la pathologie, lorsque pertinentes.

13. Incertitude

Des analyses de sensibilité déterministes et probabilistes doivent être soumises.

L’incertitude se manifeste à différents niveaux dans l’évaluation pharmaco-économique, principalement sous l’une des formes suivantes :

- La variabilité : également appelée incertitude de premier ordre, illustre le fait qu’une part d’aléatoire ne peut jamais être supprimée. À titre d’exemple, une même intervention pourrait générer des effets différents chez deux patients identiques.
▪ **L’hétérogénéité** : porte tout autant sur des effets différents d’une même intervention, mais cette fois-ci expliqués par les dissimilitudes entre les patients. L’hétérogénéité est généralement adressée sous forme d’analyses supplémentaires.

▪ **L’incertitude paramétrique** : repose sur la précision des intrants utilisés dans le modèle, tant au sujet des effets de santé que des coûts. Ces intrants peuvent par exemple être les probabilités de subir certains événements, les coûts, les valeurs d’utilité et l’effet des traitements réellement attendus pour chacune des interventions évaluées. Ceux-ci sont estimés à l’aide des meilleures informations disponibles au moment de l’évaluation. Toutefois, l’évaluation et la prise de décision pour des médicaments innovants se font souvent très tôt dans le processus de commercialisation et les résultats sont parfois immatures ou parcellaires.

L’incertitude peut survenir à plusieurs égards notamment sur les intrants, la structure du modèle, les éléments méthodologiques et les hypothèses d’extrapolation. L’incertitude paramétrique devrait être explorée avec des analyses déterministes et probabilistes afin d’informer sur la robustesse des résultats.

13.1 Analyses de sensibilité déterministes

Les analyses de sensibilité déterministes aident à informer à quel point l’incidence d’un paramètre a une influence sur les résultats. Ces analyses peuvent servir à varier des intrants de l’analyse (p. ex. : données d’efficacité, valeurs d’utilité ou coûts), de même que des éléments méthodologiques (p. ex. : taux d’actualisation, horizon temporel ou perspective). Elles incluent les analyses univariées et multivariées. Le premier type consiste à varier la valeur d’un seul paramètre. Les analyses de sensibilité déterministes multivariées reposent quant à elles sur la variation simultanée de la valeur de deux ou de plusieurs paramètres dans le but d’étudier l’effet combiné de ces modifications sur les résultats.

Lors de la réalisation d’une analyse de sensibilité déterministe, une valeur minimale et une maximale sont assignées à chaque paramètre. Ces valeurs doivent être explicitées, plausibles et bien référencées. S’il n’y a pas de sources pour les documenter, une variation d’ampleur réaliste doit être considérée (par exemple : ± 20 %).

13.2 Analyses de sensibilité probabilistes

Les analyses de sensibilité probabilistes sont effectuées en attribuant aux paramètres principaux une distribution de valeurs plausibles, par exemple en utilisant l’intervalle de confiance du paramètre d’efficacité tiré d’un essai clinique. À l’intérieur de cette distribution, un nombre prédéterminé et élevé d’échantillonnages aléatoires, ou d’itérations, est effectué afin d’attribuer une valeur alternative plausible au paramètre évalué. Ce type d’analyse de sensibilité permet d’expliciter une gamme plus large des résultats possibles et, au final, d’estimer un résultat moyen. La méthode de Monte-Carlo constitue une approche fréquemment utilisée pour ce type d’analyse.

Le nombre d’itérations effectuées, l’étendue des valeurs considérées pour chaque paramètre ainsi que la justification de la distribution doivent être clairement mentionnés et justifiées (par ex. démontrer qu’augmenter le nombre d’itérations ne modifie pas les résultats). Idéalement, l’étendue des valeurs doit être supportée par des données probantes. L’analyse probabiliste porte
spécifiquement sur l’incertitude des intrants ; les éléments méthodologiques, tels que le taux d’actualisation ou l’horizon temporel, ne devraient pas faire l’objet d’une analyse probabiliste. Toutefois, les intrants considérés dans l’analyse de sensibilité déterministe devraient également être inclus dans l’analyse probabiliste. Dans le cas contraire, des justifications sont nécessaires.

13.3 Analyses supplémentaires

Des analyses supplémentaires, ou dites de scénarios, peuvent être présentées en complément à l’analyse principale afin de capturer l’environnement complet à travers d’autres résultats utiles à une prise de décision éclairée. Ces analyses peuvent par exemple porter sur l’hétérogénéité, notamment pour des sous-groupes de patients, lorsque les résultats chez ceux-ci sont jugés différents de ceux de la population totale. Des analyses supplémentaires peuvent aussi être effectuées en considérant un comparateur alternatif, ce qui implique des intrants différents (coûts et effets de santé). Une justification doit être fournie lorsque des analyses supplémentaires sont présentées. Des analyses de sensibilité (déterministes et probabilistes) devraient également être effectuées pour ces scénarios.

13.4 Éléments à inclure pour évaluer l’incertitude

Les éléments à incorporer dans les analyses de sensibilité sont ceux qui font le plus varier les résultats et qui sont incertains. Il s’agit le plus souvent des données cliniques, des facteurs qui influencent le coût des traitements et des valeurs d’utilité. Plus l’impact de la variation d’un paramètre sur le résultat est important, plus il faut s’assurer de la fiabilité de ce dernier et tenter de quantifier l’incertitude qui y est liée. A cette fin, il faut valider la valeur des paramètres à l’aide de plusieurs sources de données pertinentes ou de recourir à plusieurs approches pour déterminer la concordance dans les résultats. La concordance rassure, alors que la disparité indique une plus grande incertitude.
14. PRESENTATION DES RESULTATS

14.1 Analyse coût-efficacité et coût-utilité

Le résultat doit être sous forme de ratio coût-utilité incrémental (analyse coût-utilité) et ratio
cœur-efficacité incrémental (analyse cœur-efficacité). La présentation des résultats doit aussi être
effectuée de manière désagrégée, sous forme de tableau.

Ratio cœur-efficacité et cœur-utilité incrémental

Le résultat principal doit être présenté sous forme d’un RCEI et RCUI (pour chaque perspective), à
moins que le médicament à l’étude se retrouve dans une situation dominante, c’est-à-dire lorsque
le médicament est jugé avoir plus d’effets de santé et des coûts associés inférieurs à son
comparateur, ou dans une situation dominée, c’est-à-dire lorsque le médicament est jugé avoir
moins d’effets de santé et des coûts associés supérieurs à son comparateur.

Le RCEI et le RCUI sont obtenus, lorsqu’on compare deux options, en calculant le ratio de la
différence de coûts sur la différence des effets de santé de deux traitements.

Méthode

<table>
<thead>
<tr>
<th>Médicament à l’étude (A)</th>
<th>Comparateur (B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coût A : total des coûts</td>
<td>Coût B : total des coûts</td>
</tr>
<tr>
<td>Effet A : total des effets de santé</td>
<td>Effet B : total des effets de santé</td>
</tr>
</tbody>
</table>

\[
RCUI = \frac{(\text{Coût } A - \text{Coût } B)}{(\text{Effet } A - \text{Effet } B)} = \text{Cout incrémental} \div \text{Effet incrémental}
\]

Exemple

<table>
<thead>
<tr>
<th>Médicament à l’étude (A)</th>
<th>Comparateur (B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coût A : 490 000 TND</td>
<td>Coût B : 360 000 TND</td>
</tr>
<tr>
<td>Effet A : 8,4 QALYs</td>
<td>Effet B : 6,1 QALYs</td>
</tr>
</tbody>
</table>

\[
RCUI = \frac{(490 000 - 360 000)}{(8,4 - 6,1)} = \frac{130 000 \text{TND}}{2,3 \text{QALYs}} = 56 522 \text{TND/QALY gagné}
\]
Plan coût-efficacité

Il s’agit d’une représentation visuelle (Figure 5) de la différence sur les effets et les coûts entre les options évaluées. L’axe des abscisses (ou des x) représente la différence d’effet de santé et l’axe des ordonnées (ou des y) représente la différence de coût. La pratique usuelle est que le comparateur est généralement considéré comme étant situé à l’origine du plan. Les coordonnées \((x, y)\) du point de rencontre de l’abscisse et de l’ordonnée sur le plan correspondent donc à l’effet incrémental et au coût incrémental du médicament à l’étude.

Le plan coût-efficacité est divisé en quatre quadrants. La position du point du médicament dans l’un ou l’autre de ces quadrants permet d’interpréter le résultat de l’analyse :

- **Quadrant I (nord-est)** : le médicament à l’étude apporte plus d’effets de santé pour des coûts plus élevés que le comparateur ;
- **Quadrant II (sud-est)** : le médicament à l’étude apporte plus d’effets de santé pour des coûts plus bas que le comparateur ;
- **Quadrant III (sud-ouest)** : le médicament à l’étude apporte moins d’effets de santé pour des coûts plus bas que le comparateur ;
- **Quadrant IV (nord-ouest)** : le médicament à l’étude apporte moins d’effets de santé pour des coûts plus élevés que le comparateur.

Figure 5 : Plan coût-efficacité
Résultats désagrégés

Le résultat devrait aussi être présenté de manière désagrégée, c’est-à-dire ventilé selon ses composantes, en termes d’effets sur la santé et des coûts, tant pour le médicament à l’étude et le comparateur. Le tableau 4 représente un exemple de présentation des résultats désagrégés.

Tableau 4 : Présentation des résultats désagrégés

<table>
<thead>
<tr>
<th>Composante</th>
<th>Médicament étudié</th>
<th>Comparateur 1</th>
<th>Différentiel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effets de santé (inclure les éléments applicables seulement)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hospitalisation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transplantation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Survie sans progression</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Survie avec progression</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Année de vie</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Année de vie pondérée par la qualité (QALY)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autres</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coûts (inclure les éléments applicables seulement)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coût d’acquisition des médicaments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coût d’administration des médicaments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coût de gestion de la pathologie (suivis médicaux)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coût des traitements subséquents</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coût des hospitalisations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coût des chirurgies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coût liés à la gestion des effets indésirables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coût de fin de vie</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coût de la transplantation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coût des tests diagnostics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autres</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COÛT TOTAL</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
14.2 Analyses de sensibilité

Les résultats des analyses de sensibilité doivent être présentés sous forme de tableau. Les représentations graphiques (p. ex. : diagramme de Tornado, nuage de points sur un plan coût-efficacité et courbe d’acceptabilité) sont fortement conseillées.

Les résultats des analyses de sensibilité doivent être regroupés dans un tableau. Les résultats de l’ensemble des analyses de sensibilité déterministes sont souvent présentés sous forme d’un diagramme de Tornado (Figure 6) qui présente la direction et la magnitude du changement du résultat quand la valeur des paramètres incertains est modifiée.

Figure 6 : Exemple d’analyses de sensibilité déterministes présentées en diagramme de Tornado

Les résultats des analyses de sensibilité probabilistes sont souvent présentés sous forme d’une courbe d’acceptabilité coût-efficacité ou d’un plan coût-efficacité. Pour le plan coût-efficacité, il s’agit de représenter chaque itération par un point sur le graphique. Le nuage de point qui en résulte permet de visuellement juger de l’étendue de l’incertitude et du positionnement à travers les quadrants. La figure 7 illustre le nuage de points pour un médicament évalué face à son comparateur.
Figure 7 : Exemple d’analyses de sensibilité probabilistes présentées sur un plan coût efficacité

Quant à la courbe d’acceptabilité coût-éfficacité, il s’agit d’illustrer la probabilité qu’une option évaluée soit efficiente en fonction de différentes valeurs seuils attribuées à un QALY additionnel. Cela permet de quantifier l’incertitude associée à la décision à prendre sur le remboursement du médicament à l’étude, selon le seuil d’efficience privilégié.

Figure 8 : Exemple d’une courbe d’acceptabilité coût-éfficacité
15. **DISCUSSION**

15.1 **Interprétation des résultats**

L’étude pharmaco-économique permet d’étudier l’opportunité d’investir des ressources financières publiques. Il existe toujours au minimum deux options lors d’une analyse : le médicament à l’étude et le (ou les) comparateur. L’analyse des résultats doit permettre de démontrer laquelle de ces options permet une meilleure utilisation des ressources publiques disponibles. Il s’agit d’une évaluation importante pour les décideurs afin de déterminer s’il est opportun de rembourser le médicament évalué.

La conclusion de l’étude pharmaco-économique tient compte des effets de santé et des coûts. La figure 9 présente une table d’interprétation générale des résultats.

![Figure 9: Interprétation générale des résultats](image)

- Lorsque le médicament à l’étude est jugé dominant par rapport au comparateur, il convient de conclure que l’utilisation de ressources financières pour rembourser ce médicament est justifiée (efficient).
- Lorsque le médicament à l’étude est jugé dominé par rapport au comparateur, il convient de conclure que l’utilisation de ressources financières pour rembourser ce médicament n’est pas justifiée (non efficient).
▪ Lorsque le médicament à l’étude et son comparateur sont jugés équivalents quant aux coûts et aux effets sur la santé, il convient de conclure que l’utilisation de ressources financières pour rembourser ce médicament est justifiée (efficient).

▪ Lorsque le médicament à l’étude se situe dans la catégorie coûts plus élevés/effets de santé supérieurs, il faut effectuer une comparaison du résultat de l’analyse – le RCUI – avec le seuil d’efficience.

▪ Lorsque le médicament à l’étude se situe dans la catégorie moins coûteux/moins d’effets de santé, il faut effectuer la comparaison du résultat avec le seuil d’efficience. Dans cette situation, le RCUI inverse doit être calculé, c’est-à-dire le comparateur versus le médicament à l’étude. Cette situation pourrait être jugée intéressante si la différence en termes d’effets de santé est faible, mais que les gains économiques sont importants.

Seuil d’efficience

Dans la situation où le médicament à l’étude est associé à des effets de santé additionnels, mais également des coûts supplémentaires, la comparaison du RCUI au seuil d’efficience est nécessaire. Le seuil se définit comme le coût supplémentaire maximal jugé acceptable associé à l’obtention d’une unité d’effet de santé additionnelle – un QALY gagné dans l’analyse coût-utilité.

La figure 10 ci-dessous reprend les éléments de la figure 9 mis sur un plan coût-efficacité. Le médicament à l’étude sera considéré efficient si son RCUI se situe dans l’aire sous la droite, celle-ci correspondant au seuil d’efficience. Le seuil d’efficience est ainsi considéré comme la borne supérieure maximale du coût additionnel jugé acceptable pour un QALY additionnel.

Figure 10 : Interprétation des résultats selon le plan coût-efficacité
15.2 Sources d’incertitudes

Étant donné que la portée du résultat dépend de la qualité des données intégrées et de la validité des méthodes utilisées, il est important que les sources d’incertitude soient discutées et rapportées de manière exhaustive et transparente. Elles doivent être réduites au minimum mais lorsque cela n’est pas possible, des analyses de sensibilité doivent être présentées et discutées.

15.3 Limites de l’analyse

L’INEAS recommande que l’ensemble des limites associées à l’estimation de la valeur des intrants et à la structure du modèle soient rapportées de façon transparente. De plus, une analyse de leur impact sur les résultats est attendue.

16. Conflits d’interets

Les conflits d’intérêts doivent être divulgués. La source du financement, le nom des auteurs ainsi que les experts ayant participé dans l’étude pharmaco-économique ainsi que leurs affiliations doivent être mentionnés.
17. Éléments clés de l’analyse de référence

Liste de validation des éléments clés des soumissions en vue d’une évaluation HTA

<table>
<thead>
<tr>
<th>Éléments clés</th>
<th>Choix méthodologiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type d’analyse</td>
<td>Analyse coût-utilité associée à une analyse coût-efficacité</td>
</tr>
<tr>
<td>Population cible</td>
<td>Ensemble des patients visés par l’indication de la demande de remboursement du médicament</td>
</tr>
<tr>
<td>Comparateur</td>
<td>Ensemble des options constituant un standard thérapeutique actuel de la prise en charge de la pathologie</td>
</tr>
<tr>
<td>Perspective</td>
<td>Payeur public (mobilisant des ressources publiques de santé) :</td>
</tr>
<tr>
<td></td>
<td>- Caisse nationale d’assurance maladie</td>
</tr>
<tr>
<td></td>
<td>- Structures sanitaires publiques</td>
</tr>
<tr>
<td>Horizon temporel</td>
<td>Suffisamment long pour que l’ensemble des coûts et des effets pertinents soient pris en compte</td>
</tr>
<tr>
<td>Modélisation</td>
<td>Modèle reconnu (avec démonstration de validation)</td>
</tr>
<tr>
<td></td>
<td>Soumis dans un tableur électronique (Microsoft Excel<sup>MC</sup>)</td>
</tr>
<tr>
<td>Mesure des effets de santé</td>
<td>Analyse coût-utilité : QALY</td>
</tr>
<tr>
<td></td>
<td>Analyse coût-efficacité : année de vie</td>
</tr>
<tr>
<td>Utilité</td>
<td>Mesurée à l’aide d’un outil indirect validé</td>
</tr>
<tr>
<td>Coûts et ressources</td>
<td>Les données doivent provenir de sources tunisiennes ou être représentatives du contexte.</td>
</tr>
<tr>
<td>Taux d’actualisation</td>
<td>5 % pour les coûts et les effets</td>
</tr>
<tr>
<td>Incertitude</td>
<td>Fournir des analyses de sensibilité déterministes et probabilistes</td>
</tr>
<tr>
<td>Présentation des résultats</td>
<td>RCUI et RCEI</td>
</tr>
<tr>
<td></td>
<td>Tableau des résultats désagrégés</td>
</tr>
</tbody>
</table>
18. RÉSUMÉ DES CARACTÉRISTIQUES DE L’ÉTUDE

Eléments de l’étude pharmaco-économique

<table>
<thead>
<tr>
<th>Intitulé</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Type d’analyse</td>
<td></td>
</tr>
<tr>
<td>Objectif(s)</td>
<td></td>
</tr>
<tr>
<td>Indication</td>
<td></td>
</tr>
<tr>
<td>Population cible</td>
<td></td>
</tr>
<tr>
<td>Médicament évalué</td>
<td></td>
</tr>
<tr>
<td>Comparateur(s)</td>
<td></td>
</tr>
<tr>
<td>Perspective(s)</td>
<td></td>
</tr>
<tr>
<td>Sources des données</td>
<td></td>
</tr>
<tr>
<td>Coûts considérés</td>
<td></td>
</tr>
<tr>
<td>Horizon temporel</td>
<td></td>
</tr>
<tr>
<td>Taux d’actualisation</td>
<td></td>
</tr>
<tr>
<td>Type de modèle</td>
<td></td>
</tr>
<tr>
<td>Présentation des résultats</td>
<td></td>
</tr>
</tbody>
</table>
19. REFERENCES PRINCIPALES

Ouvrages de référence

Glossaires

Comparaison des guides

Principaux guides consultés
Autres guides consultés

Références consultées sur le seuil d’efficience

